C1lc20444k 3970..3978

نویسندگان

  • Wonjae Choi
  • Michinao Hashimoto
  • Audrey K. Ellerbee
  • Xin Chen
  • Kyle J. M. Bishop
  • Piotr Garstecki
  • Howard A. Stone
  • George M. Whitesides
چکیده

This paper describes the behavior of bubbles suspended in a carrier liquid and moving within microfluidic networks of different connectivities. A single-phase continuum fluid, when flowing in a network of channels, partitions itself among all possible paths connecting the inlet and outlet. The flow rates along different paths are determined by the interaction between the fluid and the global structure of the network. That is, the distribution of flows depends on the fluidic resistances of all channels of the network. The movement of bubbles of gas, or droplets of liquid, suspended in a liquid can be quite different from the movement of a single-phase liquid, especially when they have sizes slightly larger than the channels, so that the bubbles (or droplets) contribute to the fluidic resistance of a channel when they are transiting it. This paper examines bubbles in this size range; in the size range examined, the bubbles are discrete and do not divide at junctions. As a consequence, a single bubble traverses only one of the possible paths through the network, and makes a sequence of binary choices (‘‘left’’ or ‘‘right’’) at each branching intersection it encounters. We designed networks so that, at each junction, a bubble enters the channel into which the volumetric flow rate of the carrier liquid is highest. When there is only a single bubble inside a network at a time, the path taken by the bubble is, counterintuitively, not necessarily the shortest or the fastest connecting the inlet and outlet. When a small number of bubbles move simultaneously through a network, they interact with one another by modifying fluidic resistances and flows in a time dependent manner; such groups of bubbles show very complex behaviors. When a large number of bubbles (sufficiently large that the volume of the bubbles occupies a significant fraction of the volume of the network) flow simultaneously through a network, however, the collective behavior of bubbles—the fluxes of bubbles through different paths of the network—can resemble the distribution of flows of a single-phase fluid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MiRNA-3978 regulates peritoneal gastric cancer metastasis by targeting legumain

Gastric cancer incidence and mortality are among the highest in China, with majority of the mortality related to peritoneal metastasis of gastric cancer. Treatment is limited to radical resection, which is impeded by incidence of metastasis at time of initial diagnosis, thus making it imperative to identify diagnostic and prognostic biomarkers. Legumain, a lysosomal cysteine endopeptidase of th...

متن کامل

Aryl hydantoin Ro 13-3978, a broad-spectrum antischistosomal.

OBJECTIVES Praziquantel is the only drug available for the treatment of schistosomiasis and the state of the exhausted drug discovery pipeline is alarming. We restarted investigations on the abandoned antischistosomal Ro 13-3978, an aryl hydantoin discovered in the early 1980s by Hoffmann La-Roche. METHODS Newly transformed schistosomula and adult Schistosoma mansoni were studied in the prese...

متن کامل

Proton transfer in methylmalonyl-CoA epimerase from Propionibacterium shermanii. Studies with specifically tritiated (2R)-methylmalonyl-CoA as substrate.

(2R)-Methyl[2-3H]malonyl-CoA was used as the substrate for methylmalonyl-CoA epimerase from Propionibacterium shermanii, under conditions where the (2S)-methylmalonyl-CoA product was removed enzymically as fast as it was formed, and the fate of the label was monitored at different extents of reaction. Very little, if any, tritium is found attached to the C-2 position in the (2S)-epimer product ...

متن کامل

Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture

ALEXANDRE H. HIRZEL*†, BERTRAND POSSE‡, PIERRE-ALAIN OGGIER‡, YVON CRETTENAND§, CHRISTIAN GLENZ¶ and RAPHAËL ARLETTAZ*‡** * Zoological Institute–Conservation Biology, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland; † Laboratory of Conservation Biology, Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland; ‡ Bearded Vulture Network Western S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011